Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica B ; (6): 2850-2858, 2021.
Article in English | WPRIM | ID: wpr-888805

ABSTRACT

COVID-19 pandemic caused by SARS-CoV-2 infection severely threatens global health and economic development. No effective antiviral drug is currently available to treat COVID-19 and any other human coronavirus infections. We report herein that a macrolide antibiotic, carrimycin, potently inhibited the cytopathic effects (CPE) and reduced the levels of viral protein and RNA in multiple cell types infected by human coronavirus 229E, OC43, and SARS-CoV-2. Time-of-addition and pseudotype virus infection studies indicated that carrimycin inhibited one or multiple post-entry replication events of human coronavirus infection. In support of this notion, metabolic labelling studies showed that carrimycin significantly inhibited the synthesis of viral RNA. Our studies thus strongly suggest that carrimycin is an antiviral agent against a broad-spectrum of human coronaviruses and its therapeutic efficacy to COVID-19 is currently under clinical investigation.

2.
Chinese Journal of Biotechnology ; (12): 2116-2126, 2021.
Article in Chinese | WPRIM | ID: wpr-887785

ABSTRACT

Carrimycin (CAM) is a new antibiotics with isovalerylspiramycins (ISP) as its major components. It is produced by Streptomyces spiramyceticus integrated with a heterogenous 4″-O-isovaleryltransferase gene (ist). However, the present CAM producing strain carries two resistant gene markers, which makes it difficult for further genetic manipulation. In addition, isovalerylation of spiramycin (SP) could be of low efficiency as the ist gene is located far from the SP biosynthesis gene cluster. In this study, ist and its positive regulatory gene acyB2 were inserted into the downstream of orf54 gene neighboring to SP biosynthetic gene cluster in Streptomyces spiramyceticus 1941 by using the CRISPR-Cas9 technique. Two new markerless CAM producing strains, 54IA-1 and 54IA-2, were obtained from the homologous recombination and plasmid drop-out. Interestingly, the yield of ISP in strain 54IA-2 was much higher than that in strain 54IA-1. Quantitative real-time PCR assay showed that the ist, acyB2 and some genes associated with SP biosynthesis exhibited higher expression levels in strain 54IA-2. Subsequently, strain 54IA-2 was subjected to rifampicin (RFP) resistance selection for obtaining high-yield CAM mutants by ribosome engineering. The yield of ISP in mutants resistant to 40 μg/mL RFP increased significantly, with the highest up to 842.9 μg/mL, which was about 6 times higher than that of strain 54IA-2. Analysis of the sequences of the rpoB gene of these 7 mutants revealed that the serine at position 576 was mutated to alanine existed in each sequenced mutant. Among the mutants carrying other missense mutations, strain RFP40-6-8 which carries a mutation of glutamine (424) to leucine showed the highest yield of ISP. In conclusion, two markerless novel CAM producing strains, 54IA-1 and 54IA-2, were successfully developed by using CRISPR-Cas9 technique. Furthermore, a novel CAM high-yielding strain RFP40-6-8 was obtained through ribosome engineering. This study thus demonstrated a useful combinatory approach for improving the production of CAM.


Subject(s)
CRISPR-Cas Systems/genetics , Genetic Engineering , Ribosomes , Spiramycin , Streptomyces/genetics
3.
Chinese Journal of Biotechnology ; (12): 1737-1747, 2021.
Article in Chinese | WPRIM | ID: wpr-878664

ABSTRACT

14- to 16-membered macrolide antibiotics (MA) are clinically important anti-infective drugs. With the rapid emergence of bacterial resistance, there is an urgent need to develop novel MA to counter drug-resistant bacteria. The targeted optimization of MA can be guided by analyzing the interaction between the MA and its ribosomal targets, and the desired MA derivatives can be obtained efficiently when combining with the rapidly developed metabolic engineering approaches. In the past 30 years, metabolic engineering approaches have shown great advantages in engineering the biosynthesis of MA to create new derivatives and to improve their production. These metabolic engineering approaches include modification of the structural domains of the polyketide synthase (PKS) and post-PKS modification enzymes as well as combinatorial biosynthesis. In addition, the R&D (including the evaluation of its antimicrobial activities and the optimization through metabolic engineering) of carrimycin, a new 16-membered macrolide drug, are described in details in this review.


Subject(s)
Anti-Bacterial Agents , Bacteria/genetics , Macrolides , Metabolic Engineering , Polyketide Synthases
SELECTION OF CITATIONS
SEARCH DETAIL